If an=n∑r=01nCr , then n∑r=0rnCr equals:
(n/2)an
Let n = 2k+1, then
an=1C0+1C1+....+1Ck+1Ck+1+1Ck+2+.....+1C2k+1
= k∑r=01Cr+1C2k+1−r=2k∑r=01Cr .
2k+1∑r=0rCr=0C0+1C1+2C2+.....
.... + kCk+k+1Ck−1+...+2k+1C2k+1
= k∑r=02k+1Cr=(2k+1)k∑01cr=(2n+1)an2
∴ n∑r=0rCr=n2an.