If a≠b then the length of common chord of the circles (x−a)2+(y−b)2=c2 and (x−b)2+(y−a)2=c2 is
We have,
(x−a)2+(y−b)2=c2
S1≡x2+a2−2ax+y2+b2−2by−c2=0
…….. (1)
(x−b)2+(y−a)2=c2
S2≡x2+b2−2bx+y2+a2−2ay−c2=0 ……… (2)
Since, a≠b
Centre of the circle S1=(a,b) and radius r1=c.
We know that the equation of common chord is S1−S2=0
So, the equation is
(b−a)x+(a−b)y=0 …….. (3)
We know that the length of common chord is
=2√r12−d12 ………. (4)
Where r1= radius and d1 is the length of perpendicular drawn from the centre to the chord.
So,
d1=∣∣ ∣ ∣∣(b−a)a+(a−b)b√(b−a)2+(a−b)2∣∣ ∣ ∣∣
d1=∣∣ ∣ ∣∣ab−a2+ab−b2√(a−b)2+(a−b)2∣∣ ∣ ∣∣
d1=∣∣ ∣ ∣∣2ab−a2−b2√2(a−b)2∣∣ ∣ ∣∣
d1=∣∣ ∣ ∣∣−(a−b)2√2(a−b)2∣∣ ∣ ∣∣
d1=∣∣∣−(a−b)√2∣∣∣
d1=(a−b)√2
From equation (4),
The length of common chord =2 ⎷c2−(a−b√2)2
=2√c2−(a−b)22
=2√2c2−(a−b)22
=√8c2−4(a−b)22
=√4c2−2(a−b)2
Hence, this is the answer.