Let Δ=∣∣
∣∣pbcaqcabr∣∣
∣∣
R1→R1−R2 and R2→R2−R3
∴Δ=∣∣
∣∣p−ab−q00q−bc−rabr∣∣
∣∣
Expanding along C1, we get
=(p−a){r(q−b)−b(c−r)}+a(b−q)(c−r)
=r(p−a)(q−b)+b(p−a)(r−c)+a(b−q)(c−r)
=(p−a)(q−b)(r−c){rr−c+bq−b+ap−a}
Δ=(p−a)(q−b)(r−c){rr−c+qq−b−1+pp−a−1}
But given Δ=0,
∴(p−a)(q−b)(r−c){pp−a+qq−b+rr−c−2}=0
∴pp−a+qq−b+rr−c−2=0 (since (p−a)(q−b)(r−c)≠0)
Hence pp−a+qq−b+rr−c=2