If a non-zero function f satisfies the relation f(x+y)+f(x−y)=2f(x).f(y) for all x,y in R and f(0)≠0; then f(10)−f(−10)=
The minimum area bounded by the function y=f(x) and y=αx+9 (αϵR) where f satisfies the relation f(x+y)=f(x)+f(y)+y√f(x) ∀ x,yϵR and f′(0)=0 & f(0)=0 is 9A, value of A is ___