When axis is at some angle ω then the focus lies on intersection of
x2+y2+2xycosω=ax and x2+y2+2xycosω=by
Here ω=π2
⇒x2+y2=axa=x2+y2x........(i)
Also x2+y2=by
⇒b=x2+y2y.......(ii)
Now c2(a2+b2)3=a4b4.....(iii)
Substituting (i) and (ii), we get
c2⎧⎨⎩(x2+y2x)2+(x2+y2y)2⎫⎬⎭3=(x2+y2x)4(x2+y2y)4c2(x2+y2)6{(1x)2+(1y)2}3=(x2+y2)8x4y4c2(x2+y2)6(x2+y2)3x6y6=(x2+y2)8x4y4c2(x2+y2)=x2y2
Hence proved
Coordinates of vertex when parabola is inclined are
⎛⎝ab2(b+acosω)2(a2+2abcosω+b2)2,ba2(a+bcosω)2(a2+2abcosω+b2)2⎞⎠
Here ω=90
⇒x=ab4(a2+b2)2,y=ba4(a2+b2)2xy=b3a3⇒bx13=ay13=α(suppose)..........(iv)
Substituting a and b in (iii)
c2=α3x43y43x23+x23
From (iii)
1=αx13y13(x23+x23)
Eliminating α
x23y23(x23+x23)=c2
Hence proved.