If (a+b)(1-ab),b,(b+c)(1-bc) are in AP, then a,1b,c are in
A.P
G.P
H.P
None of these
Explanation for the correct option :
Step 1. Given Data
(a+b)(1-ab),b,(b+c)(1-bc) are in Arithmetic Progression (A.P)
Step 2. Finding the relation between a,1b,c
As the above 3 terms are in A.P
2b = (a+b)(1-ab)+(b+c)(1-bc)
⇒ 2b =(1-bc)(a+b)+(1-ab)(b+c)(1-ab)(1-bc)
⇒ 2b = (a–abc+b–b2c+b–ab2+c–abc)(1–ab–bc+ab2c)
⇒ 2b(1–ab–bc+ab2c)=(a–abc+b–b2c+b–ab2+c–abc)
⇒ 2b–2ab2–2b2c+2ab3c=a+2b+c–2abc–b2c–ab2
⇒ -ab2–b2c+2ab3c=a+c–2abc
⇒ 2ab3c+2abc=a+c+ab2+b2c
⇒ 2abc(b2+1)=(a+c)+b2(a+c)
⇒ 2abc(b2+1)=(a+c)(b2+1)
⇒ 2abc=a+c
Divide by ac
⇒ 2b=1c+1a
This implies a,1b,c are in H.P.
Hence, option (C) is correct.
If 1/a, 1/b, 1/c are in AP, prove that (i) b + c / a, c +a / b, a + b / c are in AP (ii) a(b +c), b (c +a), c ( a + b) are in AP
If a, b, c are in AP, show that
1(√b+√c),1(√c+√a),1(√a+√b) are in AP.