If a ray makes angles α,β,γ and δ with the four diagonals of a cube and
A:cos2α+cos2β+cos2γ+cos2δ
B:sin2α+sin2β+sin2γ+sin2δ
C:cos2α+cos2β+cos2γ+cos2δ
Arrange A,B,C in descending order
If a ray makes angles α,β,γ and δ with the four diagonals of a cube.
Then we know that cos2α+cos2β+cos2γ+cos2δ=43
A:
cos2α+cos2β+cos2γ+cos2δ=43
B:
sin2α+sin2β+sin2γ+sin2δ
=1−cos2α+1−cos2β+1−cos2γ+1−cos2δ=4−43=83
C:
cos2α+cos2β+cos2γ+cos2δ
=1−2sin2α+1−2sin2β+1−2sin2γ+1−2sin2δ=4−163=−43
Descending order is B,A,C
Hence, option A is correct answer.