If a real value of function fof a real variable xis such that 1(1+x)(1+x2)=A(1+x)+f(x)(1+x2)then f(x)=
(1-x)2
(x2+1)2
1-x
None of these
Explanation for the correct options:
Find the function f(x):
Given that a real value of function fof a real variable xis such that 1(1+x)(1+x2)=A(1+x)+f(x)(1+x2)
⇒1=(1+x2)A+f(x)(1+x)
Put x=-1.we get
⇒1=2A⇒A=12
Now, 1(1+x)(1+x2)-12(1+x)=f(x)(1+x2)
⇒1(1+x)2-1-x2(1+x2)=f(x)(1+x2)⇒1-x2(1+x)=f(x)⇒f(x)=(1-x)(1+x)(1+x)⇒f(x)=(1-x)
Hence, the correct option is (C).
Find the domain of each of the following real valued functions of real variable : (i) f(x)=1x (ii) f(x)=1x−7 (iii) f(x)=3x−2x+1 (iv) f(x)=2x+1x2−9 (v) f(x)=x2+2x+1x2−8x+12
Find the domain of each of the following real valued functions of real variable: (i) f(x)=√x−2 (ii) f(x)=1√x2−1 (iii) f(x)=√9−x2 (iv) f(x)=√x−23−x