Let mid point of chord of given hyperbola is (h,k)
Also let (ct1,ct1)and(ct1,ct1) be the end points of the chord.
then 2h=(t1+t2)and2k=c(1t1+1t2)
According to equation
c2(t1−t2)2+c2(1t1+1t2)=4d2
⇒c2[(t1+t2)2−4t1t2][1+1(t1t2)2]=4d2
⇒c2[4h2c2−4hk][1+k2h2]=4d2
⇒(xy−c2)(x2+y2)=d2xy