If(a+2bcosx)(a-2bcosy)=a2-b2, where a>b>0, then dy/dx at (π/4,π/4) is
(a+b)(a-b)
(a-2b)(a+2b)
(a-b)(a+b)
(2a+b)(2a-b)
Explanation of the correct option :
Given (a+2bcosx)(a-2bcosy)=a2-b2
Differentiating both sides with respect to y. we get
-2bsinxdxdy(a-2bcosy)+(a+2bcosx)(2bsiny)=0
Now, (x,y)=(π4,π4)
⇒-bdxdy(a-b)+(a+b)b=0⇒dxdy=(a+b)(a-b)⇒dydx=(a-b)(a+b)
Hence, the correct option is C.