If α satisfies the equation x2−2xcosθ+1=0. Find the value of αn + 1αn n ϵ Z
2cos.
Solution:
From quadratic formulae,we know roots of the quadratic equation
α = −b+––√b2−4ac2a
= 2cosθ+––√4cos2θ−4.1.12
= cosθ+––isinθ , α = cosθ + i sinθ, cosθ - i sinθ
Let α = cosθ + i sinθ
Subsititute the value of α in αn + 1αn
= (cosθ+isinθ)n + 1(cosθ+isinθ)n
{Use de moivre's theorem (cosθ+isinθ)n = cosnθ + i sinnθ }
(cosθ+isinθ)n + (cosθ+isinθ)−n
we know, cos(−θ) = cosθ and sin(−θ) = - sinθ
= [(cosnθ + i sinnθ) + (cos(nθ) + i sin(−nθ))]
= cosnθ + i sinnθ + cosnθ - i sinnθ)
= 2 cosnθ.
OR,
Let α = cosθ - i sinθ
Subsititute the value of α in αn + 1αn
= (cosθ−isinθ)n + 1(cosθ−isinθ)n
{Use de moivre's theorem (cosθ+isinθ)n = cosnθ + i sinnθ }
we know, cos(−θ) = cosθ and sin(−θ) = - sinθ
= (cos(−θ) + i sin(−θ))n + (cos(−θ) + i sin(−θ))−n
= (cos(−nθ) + i sin(−nθ)) + (cos(nθ) + i sin(nθ))
= cosnθ - i sinnθ) + cosnθ + i sinnθ)
= 2 cosnθ.