1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
If a θ +b t...
Question
If
a
sec
θ
+
b
tan
θ
=
1
and
a
2
sec
2
θ
−
b
2
tan
2
θ
=
5
, than
a
2
b
2
+
4
a
2
=
A
9
b
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
9
a
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−
2
b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
9
b
2
Given:
a
sec
θ
+
b
tan
θ
=
1.........
(
i
)
and
a
2
sec
2
θ
−
b
2
tan
2
θ
=
5.............
(
i
i
)
From (i)
a
sec
θ
=
1
−
b
tan
θ
squaring both sides,
a
2
sec
2
θ
=
1
+
b
2
tan
2
θ
−
2
b
tan
θ
.
.
.
.
.
.
.
.
.
.
(
i
i
i
)
From (ii)
a
2
sec
2
θ
=
5
+
b
2
tan
2
θ
.
.
.
.
.
.
.
.
.
.
.
.
.
(
i
v
)
∴
from (iii) and (iv)
⇒
1
−
2
b
tan
θ
=
5
⇒
−
2
b
tan
θ
=
4
⇒
b
tan
θ
=
−
2..........
(
v
)
∴
from (i)
a
sec
θ
−
2
=
1
⇒
a
sec
θ
=
3
⇒
a
=
3
cos
θ
squaring both sides,
⇒
a
2
=
9
cos
2
θ
.
.
.
.
.
.
.
.
.
.
(
v
i
)
now, from (v)
b
tan
θ
=
−
2
squaring both sides,
⇒
b
2
sin
2
θ
cos
2
θ
=
4
⇒
4
cos
2
θ
=
b
2
sin
2
θ
⇒
4
cos
2
θ
=
b
2
(
1
−
cos
2
θ
)
⇒
4
cos
2
θ
+
b
2
cos
2
θ
=
b
2
⇒
cos
2
θ
(
4
+
b
2
)
=
b
2
⇒
cos
2
θ
=
b
2
b
2
+
4
.
.
.
.
.
.
.
.
(
v
i
i
)
From (vi) and (vii), we get
a
2
=
9
b
2
b
2
+
4
⇒
(
b
2
+
4
)
a
2
=
9
b
2
⇒
a
2
b
2
+
4
a
2
=
9
b
2
Hence, the required answer is
9
b
2
Suggest Corrections
1
Similar questions
Q.
a
sec
θ
+
b
tan
θ
=
1
,
a
2
sec
2
θ
−
b
2
tan
2
θ
=
5
Then
a
2
(
b
2
+
4
)
=
Q.
If
a
s
e
c
θ
+
b
t
a
n
θ
=
1
and
a
2
s
e
c
2
θ
−
b
2
t
a
n
2
θ
=
5
, find
a
2
b
2
+
4
a
2
.
Q.
a
sec
θ
+
b
tan
θ
=
1
,
a
sec
θ
−
b
tan
θ
=
5
⇒
a
2
(
b
2
+
4
)
=
?
Q.
If x = a sec θ and y = b tan θ, then b
2
x
2
− a
2
y
2
=
(a) ab
(b) a
2
− b
2
(c) a
2
+ b
2
(d) a
2
b
2