If (a secθ.b tanθ) and (a secΦ,b tan Φ) are the ends of a focal chord of the hyperbola x2a2 − y2b2 = 1 whose eccentricity is e,then tan θ2 × tan⊘2 equal to.
Here the task will be simplified if we know the form of
a chord joining 2 points of hyperbola x2a2 − y2b2 = 1.which is,
xa.cos[θ−⊘2]−yb.sin[θ+⊘2]=cos[θ+⊘2]
This passes through (ae,0)
e.cos[θ−⊘2]−0=cos[θ+⊘2.]
cos[θ−⊘2]cos[θ−⊘2] = e
i.e.,e1=cosθ2.cos⊘2−θ2.sin⊘2cosθ2.cos⊘2+θ2.sin⊘2
i.e.,e+1e−1 = 2.cosθ2.cos⊘2−2.sinθ2.sin⊘2
∴ tan θ2.tan ⊘2 = 1−e1+e
Hence option (b)