If a=secθ−tanθ and b=cosecθ+cotθ, then show that ab+a-b+1=0.
LHS=ab+a-b+1
=(secθ−tanθ)(cosec+cot)+secθ−tanθ−cosecθ−cotθ+1
=(1cosθ−sinθcosθ)(1sinθ+cosθsinθ)+1cosθ−sinθcosθ−1sinθ−cosθsinθ+1
=1sinθcosθ+1cosθ×cosθsinθ−sinθcosθ×1sinθ−tanθ×cotθ+1cosθ−sinθcosθ−1sinθ−cosθsinθ+1
=1sinθcosθ+1sinθ−1cosθ−1+1cosθ−1sinθ−cosθsinθ+1=1sinθcosθ−sinθcosθ−cosθsinθ
=1−sin2θ−cos2θsinθ.cosθ=1−(cos2θ+sin2θ)sinθ.cosθ
=1−1sinθ.cosθ=0=RHS. Hence Proved.