wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a=secθtanθ and b=cosecθ+cotθ, then show that ab+a-b+1=0.

Open in App
Solution

LHS=ab+a-b+1

=(secθtanθ)(cosec+cot)+secθtanθcosecθcotθ+1

=(1cosθsinθcosθ)(1sinθ+cosθsinθ)+1cosθsinθcosθ1sinθcosθsinθ+1

=1sinθcosθ+1cosθ×cosθsinθsinθcosθ×1sinθtanθ×cotθ+1cosθsinθcosθ1sinθcosθsinθ+1

=1sinθcosθ+1sinθ1cosθ1+1cosθ1sinθcosθsinθ+1=1sinθcosθsinθcosθcosθsinθ

=1sin2θcos2θsinθ.cosθ=1(cos2θ+sin2θ)sinθ.cosθ

=11sinθ.cosθ=0=RHS. Hence Proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon