The correct option is C P(E1/A)=4[n(n+1)]2
Let Eλ be the event that exactly λ out of n pass the examination and
A is the event that a student pass the examination
P(Eλ)∝λ2⇒P(Eλ)=kλ2 (k os proportionality constant)
∴E0,E1,E2,...En are mutually exclusive and exhaustive events.
⇒P(E0)+P(E1)+P(E2)+...P(En)=1⇒0+k(1)2+k(2)2+...+k(n)2=1⇒k(12+22+32+...n2)=1
⇒kn(n+1)(2n+1)6=1⇒k=6n(n+1)(2n+1)
P(A)=∑nr=1P(Eλ)P(AEλ)=∑nr=1kλ2×λn=kn∑nr=1λ3
=kn[n(n+1)2]2=6n2(n+1)(2n+1).n2(n+1)24=3(n+1)2(2n+1)
P(E1A)=P(E1)P(AE1)P(A)=6n(n+1)(2n+1)×1n3(n+1)2(2n+1)=4[n(n+1)]2