If A=sin−1(sin10), B=cos−1(cos10) then
The correct options are
B A=3π−10
C A<B
Given:
A=sin−1(sin10)
As 3π<10<3π+π2
[Since, 1 radian =57.29∘ (Approximately), 10 radias =572.9∘(Approximately),]
A=sin−1(sin(3π−10))=3π−10
B=cos−1(cos(10−3π))=10−3π
Since, 3π−10<10−3π
Hence, A<B