If A=sin8θ+cos14θ, then for all real values of θ
A≥1
0<A≤1
1<2A≤3
None of these
Step1. Construction :
Given, A=sin8θ+cos14θ
We know that, 0≤sin2θ≤1
∴(sin2θ)4≤sin2θ⇒sin8θ≤sin2θ
And also 0≤cos2θ≤1
∴(cos2θ)7≤cos2θ⇒cos14θ≤cos2θ
Step2. Find the condition onA for all real values of θ:
Now, sin8θ+cos14θ≤sin2θ+cos2θ
⇒A≤1
When A>0 consider A=0
Thus, sinθ=cosθ=0 which is not possible.
Therefore, 0<A≤1
Hence the correct option is B.
If A=sin2θ+cos4θ, then for all real value of θ: