Consider the given equation.
asinα=bsin(120∘+α)=csin(240∘+α)=k (say)
Therefore,
ka=sinα
kb=sin(120∘+α)
kc=sin(240∘+α)=sin(x−120∘)
So,
k(1a+1b+1c)=(sinα+sin(120∘+α)+sin(α−120∘))
=sinα+sinαcos120∘+cosαsin120∘+sinαcos120∘−cosαsin120∘
=sinα+2sinαcos120∘
=sinα+2(−12)sinα
=0
As, k≠0,
1a+1b+1c=0
ab+bc+ca=0
Hence, proved.