wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If asinθ+bcosθ=c, then prove that acosθbsinθ=±a2+b2c2

Open in App
Solution

asinθ+bcosθ=c

Squaring both sides

(asinθ+bcosθ)2=c2

a2sin2θ+b2cos2θ+2ab sinθ cosθ=c2 --------(1)

Let, acosθbsinθ=x

Squaring both sides

(acosθbsinθ)2=x2

a2cos2θ+b2sin2θ2ab sinθ cosθ=x2 ------(2)

Add equation (1) and (2),

(a2sin2θ+b2cos2θ+2ab sinθ cosθ) + (a2cos2θ+b2sin2θ2ab sinθ cosθ) = c2 + x2

(a2+b2)cos2θ+(a2+b2)sin2θ=c2+x2

(a2+b2)[sin2θ+cos2θ]=c2+x2

(a2+b2)=c2+x2................[sin2x+cos2x=1]

(a2+b2c2)=x2

Take square root both sides,

± (a2+b2c2)=x

acosθbsinθ=± (a2+b2c2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon