If asinx+bcos(x+θ)+bcos(x−θ)=d then the minimum value of |cosθ| is equal to:
If asinx+bcos(x+θ)+bcos(x−θ)=d, then the minimum value of |cosθ| is equal to
If (a−d)2 , a2 , (a+d)2 are in GP, then d2a2 equals to [a ≠ 0,d ≠ 0]
If a, b, c, d are in G.p., prove that :
(i) (a2+b2),(b2+c2),(c2+d)2 are in G.P.
(ii) (a2−b2),(b2−c2),(c2−d)2 are in G.P.
(iii) 1a2+b2,1b2+c2,1c2+d2 are in G.P.
(iv) (a2+b2+c2),(ab+bc+cd),(b2+c2+d2)