If a sphere of constant radius k passes through O(0,0,0) and meet the axes in A,B,C and the centroid of △ABC lies on x2+y2+z2=λk2 then value of λ equals
Let A,B,C are (a,0,0),(0,b,0) and (0,0,c) then equation of sphere OABC is
|¯r−(a2^i+b2^j+c2^k)|=14(a2+b2+c2)
∴|¯r−(a2^i+b2^j+c2^k)|=(12√a2+b2+c2)2
∴k=Radiusofsphere=12√a2+b2+c2
∴4k2=a2+b2+c2 ...(1)
Also centroid (α,β,γ)of△ABC gives
α=a+0+03
∴a=2α,b=3β,c=3γ
By (1) we have 4k2
=9(α2+β2+γ2)
⇒(x2+y2+z2)
=49k2=λk2(Given)
⇒λ=49