The correct option is D Radius of the circle inscribed in triangle OAB is 5−√17 units
Let the line equation be
xa+yb=1,a,b>0 ⋯(i)
Since line passes through P(1,4),
⇒1a+4b=1
⇒b=4aa−1
Let Area of △OAB=Δ
Now, 2Δ=ab=a(4aa−1)=4a2a−1
2dΔda=4[(a−1)2a−a2⋅1(a−1)2]=0⇒a=0,2
and b=0,8 respectively
∵a,b>0⇒a=2,b=8,m=−4
So, Δmin=162=8 sq. units
From (i),
line equation is x2+y8=1
⇒4x+y−8=0
So, distance of line L from (√4,√17) is ∣∣∣4√4+√17−8√16+1∣∣∣=1 unit
Δ=8,s=2+8+√682=5+√17
∴r=Δs=85+√17=5−√17 units