If A=tan−1(x√32k−x) and B=tan−1(2x−kk√3), then A−B =
=tan−1[3kx−[4kx−2k2−2x2+kx]√3(2k2−kx+2x2−kx)]
=tan−1[2(k2+x2−kx)2√3(k2+x2−kx)]
⇒A−B=tan−11√3=π6
Solveis equal to
(A) (B). (C) (D)