If a tanθ= b then a cos 2θ + b sin 2θ is equal to
a
Given tanθ=ba
We need to find the value of a cos2θ + b sin2θ since we are given the value of tanθ.Express sin2θ
& cos2θ in terms of tanθ
a.((1−tan2θ)(1+tan2θ)) + b. (2tanθ(1−tan2θ))
Substituting the value of tanθ.
a.(1−b2a2)(1+b2a2)b.2ba(1+b2a2)
= a.(a2−b2)(a2+b2)+b.2ab(a2+b2)
= a(a2−b2)(a2+b2)+b.2ab2(a2+b2)
= a3−ab2+2ab2(a2+b2)
= a3+ab2(a2+b2) = a(a3+b2)(a2+b2) = a
Correct option is A.