If a=tanθ+cotθ and b=tanθ–cotθ, then the value of a2−b2+(a+btanθ)is equal to
A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4tanθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D
6 Given: a=tanθ+cotθandb=tanθ−cotθConsider,a2−b2+(a+btanθ)=(tanθ+cotθ)2−(tanθ−cotθ)2+(tanθ+cotθ+tanθ−cotθtanθ)=(tan2θ+cot2θ+2tanθcotθ)−(tan2θ−cot2θ−2tanθcotθ)+(2tanθtanθ)=tan2θ+cot2θ+2tanθcotθ−tanθ−cot2θ+2tanθcotθ+2=4tanθcotθ+2=4tanθ×1tanθ+2=4+2=6