If a tangent drawn from the point (4, 0) to the circle x2+y2=8 touches it at a point A in the first quadrant, then the coordinates of another point B on the circle such that AB = 4 are
(2,-2) or (-2,2)
Equation of tangent through (4,0)x+y−4=0Point of contact=(2,2)AB=4⇒B=(2+4cosθ,2+4sinθ)
This point B lies on the circle ⇒(2+4cosθ)2+(2+4sinθ)2=8
⇒16+16(cosθ+sinθ) = 0
cosθ+sinθ=−1
θ=π,θ=3π2(−2,2)(2,−2)