The correct option is D (−∞,−1)∪(0,∞)
y=ex+ex+ex+...∞
⇒y=ex+y
Taking log both side, we have
lny=(x+y)
Differentiate both side w.r.t. x
1ydydx=1+dydx⇒dydx=y1−y=y′
⇒y=y′1+y′
Since, y is an exponential function so, y>0
⇒y′1+y′>0
Case-1: y′>0 and 1+y′>0
⇒y′>0 and y′>−1
⇒y′∈(0,∞)
Case-2: y′<0 and 1+y′<0
⇒y′<0 and y′<−1
⇒y′∈(−∞,−1)
∴ y′∈(−∞,−1)∪(0,∞)