Given that: a13+b13+c13=0
To Prove: (a+b+c)3=27abc
Solution:
a13+b13+c13=0
or, a13+b13=−c13 −−−−−−−−−−−(1)
Cubing on both the sides,
or (a13+b13)3=(−c13)3
or (a13)3+(b13)3+3×a13×b13(a13+b13)=−c
or, a+b+c+3×a13×b13×(−c13)=0 (from eqn.(1))
or, a+b+c=3×a13×b13×c13
Cubing on both the sides,
or, (a+b+c)3=(3×a13×b13×c13)3
or, (a+b+c)3=27abc proved.