The correct option is B 0
Given: x216−y29=1⇒ a=4,b=3
The endpoints of the chord are
A=(asecθ,btanθ), B=(asecϕ,btanϕ)
The equation of chord AB is
xacos(θ−ϕ2)−ybsin(θ+ϕ2)=cos(θ+ϕ2)⇒x4cos(θ−ϕ2)−y3sin(θ+ϕ2)=cos(θ+ϕ2)
It passes through (4,0), so
cosθ+ϕ2cosθ−ϕ2=1
Applying componendo and dividendo,
⇒cosθ+ϕ2−cosθ−ϕ2cosθ−ϕ2+cosθ+ϕ2=1−11+1⇒−tanθ2tanϕ2=0∴tanθ2tanϕ2=0