Given: x2144−y225=1 ⇒a=12,b=5
⇒e2=1+b2a2⇒e2=1+25144⇒e=1312
The endpoints of the focal chord are A=(asecθ,btanθ) and B=(asecϕ,btanϕ)
Then, the equation of chord AB is
xacos(θ−ϕ2)−ybsin(θ+ϕ2)=cos(θ+ϕ2)
It passes through (±ae,0), so
cosθ+ϕ2cosθ−ϕ2=±e
When cosθ+ϕ2cosθ−ϕ2=e
Applying componendo and dividendo, we get
−tanθ2tanϕ2=e−1e+1⇒−tanθ2tanϕ2=1312−11312+1=125
When cosθ+ϕ2cosθ−ϕ2=−e
Applying componendo and dividendo, we get
−tanθ2tanϕ2=−e−1−e+1⇒−tanθ2tanϕ2=−1312−1−1312+1=25
Therefore, the maximum value of ∣∣∣tanθ2tanϕ2∣∣∣ is 25