If A×B⊆C×D and A×B≠ϕ, prove that A⊆C and B⊆D.
Let (a, b) be an arbitary element of A×B then,
(a,b)ϵA×B
⇒aϵA and bϵB ...(i)
Now,
(a,b)ϵA×B
⇒(a,b)ϵC×D [∵A×B⊆C×D]
⇒aϵC and bϵD ...(ii)
∴aϵA⇒aϵC [Using (i) and (ii)]
⇒A⊆C
and,
⇒bϵB⇒bϵD
⇒B⊆D
Hence, proved.