Let us take a unit vector
→a=x^i+y^j+z^k
So magnitude of →a=|→a|=1
Angle of →a with ^i=π3
→a^i=|→a|∣∣→i∣∣cosπ3
⇒(x^i+y^j+z^k).^i=1×1×12
⇒(x^i+y^j+z^k).(1^i+0^j+0^k)=12
⇒(x×1)+(y×0)+(z×0)=12
⇒x+0+0=12
⇒x=12
Angle of →awith ^j=π4
→a^j=|→a|∣∣→j∣∣cosπ4
⇒(x^i+y^j+z^k).^j=1×1×1√2
⇒(x^i+y^j+z^k).(0^i+1^j+0^k)=1√2
⇒(x×0)+(y×1)+(z×0)=1√2
⇒0+y+0=1√2
⇒y=1√2
Angle of →a with ^k=θ
→a.^k=∣∣→a∣∣∣∣^k∣∣×cosθ
(x^i+y^j+z^k).(0^i+0^j+1^k)=1×1×cosθ
⇒(x×0)+(y×0)+(z×1)=cosθ
⇒0+0+z=cosθ
⇒z=cosθ
Now, magnitude of →a=√x2+y2+z2
⇒1=
⎷(12)2+(1√2)2+cos2θ (As |→a=1|)
⇒1=√14+12+cos2θ
⇒1=√34+cos2θ
⇒(√34+cos2θ)2=12
⇒34+cos2θ=1
⇒cos2θ=14
⇒cosθ=±√14
⇒cosθ=±12
Since θ is given an acute angle
So, θ<90°
∴θ is in first quadrant
& cosθ is positive in first quadrant
So, cosθ=+12
⇒θ=60°=π3
Also, z=cosθ=cos60°=12
Hence, x=12,y=1√2 & z=12
The required vector →a is 12^i+1√2^j+12^k
So, components of →a are 12,1√2 &12