If a unit vector ^a, makes angles π3 with ^i,π4 with ^j and an acute angle θ with ^k, then find θ and hence the components of a.
Let unit vector makes angle α,β and γ with ^i,^j and ^k respectively, then
α=π3,β=π4 and γ=θ (Given)
∴cos2 π3+cos2 π4+cos2 θ=1⇒(12)2+(1√2)2+cos2 θ=1⇒14+12+cos2 θ=1⇒cos2 θ=1−34⇒cos2 θ=4−34=14⇒cos θ=±1√4⇒cos θ=±12
cos θ=12 [cos θ≠−12,∵θ is an acute angle]
⇒θ=cos−1(12)=cos−1(cos π3)
⇒θ=π3 and components of a are cos π3, cos π4, cos π3
⇒12,1√2,12
Note For acute angle, cos θ>0 and for obtuse angle cos θ<0