Let the variable circle be
x2+y2+2gx+2fy=0
Putting x=0
y=0,−2f⇒A=(0,−2f)
Putting y=0
x=0,−2g⇒B=(−2g,0)
Then radius of the circle is
r=√g2+f2⇒a2=g2+f2
Let P(h,k) be the centroid of △OAB, we get
h=−2g3,k=−2f3∵g2+f2=a2⇒9h24+9k24=a2
Hence, the required locus is
9(x2+y2)=4a2