wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a variable line in two adjacent positions has direction cosines l,m,n and l+δl,m+δm,n+δn, then show that the small angle δθ between the two positions is given by δθ2=δl2+δm2+δn2.

Open in App
Solution

We have l,m,n, and δl,m+δm,n+δn as direction cosines of a variable line in two different positions. l2+m2+n2=1 ...(i)
and (l+δl)2+(m+δm)2+(n+δn)2 ...(ii)
l2+m2+n2+δl2+δm2+δn2+2(lδl+mδm+nδn)=1 lδl+mδm+nδn=12(δl2+δm2+δn2) ...(iii)
Now, aandb are unit vectors along a line with direction cosines l,m,n and (l+δl),(m+δm),(n+δn), respectively.
a=lˆi+mˆj+nˆk andb=(l+δl)ˆi+(m+δm)ˆj+(n+δn)ˆk
cosδθ=a.b|a||b|=a.b [|ˆa|=|ˆb|=1]
cosδθ=l(l+δl)+m(m+δm)+n(n+δn)
cosδθ==(l2+m2+n2)+(lδl+mδm+nδn)
cosδθ==112(δl2+δm2+δn2) [using Eq.(iii)]
2(1cosδθ)=(δl2+δm2+δn2)
2.2sin2δθ2=δl2+δm2+δn2 [1cos θ=2 sin2 θ2]
4(δθ2)2=δl2+δm2+δn2[since, δθ2is small, then sinδθ2=δθ2]
δθ2=δl2+δm2+δn2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon