If a variable line in two adjacent positions has direction cosines l,m,n and l+δl,m+δm,n+δn, then show that the small angle δθ between the two positions is given by δθ2=δl2+δm2+δn2.
We have l,m,n, and δl,m+δm,n+δn as direction cosines of a variable line in two different positions. ∴l2+m2+n2=1 ...(i)
and (l+δl)2+(m+δm)2+(n+δn)2 ...(ii)
⇒l2+m2+n2+δl2+δm2+δn2+2(lδl+mδm+nδn)=1 ⇒lδl+mδm+nδn=−12(δl2+δm2+δn2) ...(iii)
Now, →aand→b are unit vectors along a line with direction cosines l,m,n and (l+δl),(m+δm),(n+δn), respectively.
∴→a=lˆi+mˆj+nˆk and→b=(l+δl)ˆi+(m+δm)ˆj+(n+δn)ˆk
⇒cosδθ=→a.→b−→|a|→|b|=→a.→b [∵|ˆa|=|ˆb|=1]
⇒cosδθ=l(l+δl)+m(m+δm)+n(n+δn)
⇒cosδθ==(l2+m2+n2)+(lδl+mδm+nδn)
⇒cosδθ==1−12(δl2+δm2+δn2) [using Eq.(iii)]
⇒2(1−cosδθ)=(δl2+δm2+δn2)
⇒2.2sin2δθ2=δl2+δm2+δn2 [∵1−cos θ=2 sin2 θ2]
⇒4(δθ2)2=δl2+δm2+δn2[since, δθ2is small, then sinδθ2=δθ2]
∴δθ2=δl2+δm2+δn2