The correct option is C (x+y)ab=2xy(a+b)
Given lines
L1:xa+yb−1=0 and L2:xb+ya−1=0
Line passing through the point of intersection of both the lines is
L1+λL2=0⇒(xa+yb−1)+λ(xb+ya−1)=0⇒(bx+ay−ab)+λ(ax+by−ab)=0⇒(b+λa)x+(a+λb)y−ab(1+λ)=0
Finding A and B,
A=(ab(1+λ)b+aλ,0)B=(0,ab(1+λ)a+bλ)
We know that (h,k) is the mid-point of AB, we get
(h,k)=(ab(1+λ)2(b+aλ),ab(1+λ)2(a+bλ))⇒12h+12k=a+b+aλ+bλab(1+λ)⇒12h+12k=a(1+λ)+b(1+λ)ab(1+λ)⇒12h+12k=a+bab⇒h+khk=2(a+b)ab
Hence, the required locus is
(x+y)ab=2xy(a+b)