The correct options are
A ^i−7^j+2^k
B 13^i−^j−10^k√5
A vector →r of magnitude 3√6 is collinear with the bisector of the angle between the vectors →a=7^i−4^j−4^k & →b=−2^i−^j+2^k
1.→r=t(^a+^b)
⇒→r=t(7^i−4^j−4^k9+−2^i−^j+2^k3)
⇒→r=t(^i−7^j+2^k9)
but |→r|=3√6, simplifying for t gives t=9
∴→r=^i−7^j+2^k
2.→r=s(^b−^a)
⇒→r=s(−2^i−^j+2^k3−7^i−4^j−4^k9)
⇒→r=s(−13^i+^j−10^k9)
but |→r|=3√6, simplifying for s gives s=9√5
∴→r=13^i−^j−10^k√5
Hence, options A and C.