If a vector ¯¯¯r satisfies the equation ¯¯¯r×(¯i+2¯j+¯¯¯k)=¯i−¯¯¯k, then ¯¯¯r is equal to
A
¯i+3¯j+¯¯¯k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3¯i−7¯j−3¯¯¯k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯¯¯k+t(¯i+2¯j+¯¯¯k) where t is any scalar
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2¯i+(t+3)¯j−5¯¯¯k where t is any scalar
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A¯i+3¯j+¯¯¯k →C=→C.ˆi=→C.ˆj=→C.ˆkand∣∣∣→C∣∣∣=100Let→C=xˆi+yˆj+zˆkx2+y2+z2=100−−−(i)Now,→Cˆ.i=(xˆi+yˆj+zˆk).ˆi=x→C.ˆj=y→C.ˆk=z∴x=y=zPuttingthesevalueinequn(i)weget3x2=100x2=1003∴x=±10√3Requiredvector=±10√3(ˆi+ˆj+ˆk)→r×(ˆi+2ˆj+ˆk)=ˆi+ˆkLet→r=xˆi+yˆj+zˆk(xˆi+yˆj+zˆk)(ˆi+ˆj+ˆk)=⎡⎢⎣ˆiˆjˆkxyz121⎤⎥⎦ˆi(y−2z)−ˆj(x−z)+ˆk(x−y)=ˆi−ˆjOncomparing,weget→r=ˆi+3ˆj+ˆk