If a vector →r has magnitude 14 and direction ratios 2, 3 and -6. Then, find the direction cosines and components of →r, given that →r makes an acute angle with X- axis.
Here, |→r|=14,→a=2k,−→3k and →c=−6k∴ Direction cosines l, m and n are l=→a|→r|=2k14=k7m=→b|→r|=3k14and n=→c|→r|=−6k14=−3k7
Also, we know that
l2+m2+n2=1
⇒ k249+9k2196+9k249=1
⇒ 4k2+9k2+36k2196=1
⇒ k2=19649=4
⇒ k=±2
So, the direction cosines (l, m, n) are 27,37 and −67.
[since, →r makes an acute angle with X-axis]
∵ →r=^r.|→r|
∴ →r=(l^i+m^j+n^k)|→r|
=(+27^i+37^j−67^k).14=+4^i+6^j−12^k