We have,
ax−1=bc
axa=abc
ax=abc
a=(abc)1/x …(1)
Similarly,
b=(abc)1/y …(2)
c=(abc)1/z …(3)
Multiply (1),(2),(3)
abc=(abc)1/x.(abc)1/y.(abc)1/z
abc=(abc)1/x+1/y+1/z
∴ 1x+1y+1z=1
xy+yz+zxxyz=1
xy+yz+zx=xyz
xy+yz+zx−xyz=0
Hence, this is the answer.
If ax−1=bc, by−1=ac, cz−1=ab such that x,y,z are integers then value of xy+yz+zx–xyz is