Consider the given polynomial.
ax2+bx+c …… (1)
bx2+ax+c …… (2)
x+1 is the factor of two polynomials means x = -1 satisfies two equations a−b+c=0 …… (3)
b−a+c=0 …….. (4)
From equations (3) and (4), we get
a=b
c=0
Hence, proved.
If ax2+bx+c=0 and bx2+cx+a=0 have a common root
a ≠ 0, then a3+b3+c3abc=