Let ax=by=cz=k
∴a=k1/x,b=k1/y,c=k1/z
Since,
abc=1
Therefore,
k1/x.k1/y.k1/z=1
k(1/x+1/y+1/z)=k0
∴1/x+1/y+1/z=0
xy+yz+zxxyz=0
xy+yz+zx=0
Hence, this is the answer.
If ax−1=bc, by−1=ac, cz−1=ab such that x,y,z are integers then value of xy+yz+zx–xyz is