Ifax=bc,by=ac,cz=ab, thenxyz=
0
1
x+y+z+2
x+y+z
Step1. Express the given data:
Since ax=bc,by=ac,cz=ab,
(ax)y=(bc)y
=bycy=ac.cy
Step2. Find the value of xyz:
(axy)z=(ac)z.(cy)z
=czaz(cz)y=(ab)az(ab)y=(ab)az.ayby=(ab)az.ay.ac=a2+z+y(bc)=a2+z+y.ax=a2+x+z+y
⇒axyz=ax+y+z+2
Comparing the powers on both sides
⇒xyz=x+y+z+2
Hence, the correct option is C.
If ax−1=bc, by−1=ac, cz−1=ab such that x,y,z are integers then value of xy+yz+zx–xyz is