Step : Simplifying the LHS of given expression
Given,
a=xm+n⋅xl;b=xn+l⋅xm and c=xl+m⋅xn
To prove : am−n⋅bn−l⋅cl−m=1.
Taking L.H.S, we have:
=am−n⋅bn−l⋅cl−m=(xm+n⋅xl)m−n⋅(xn+l⋅xm)n−l⋅(xl+m⋅xn)l−m=(x(m+n)(m−n)⋅xl(m−n))⋅(x(n+l)(n−l)⋅xm(n−l)),(x(l+m)(l−m)⋅xn(l−m))=(x(m2−n2)⋅xlm−ln)⋅(x(n2−l2)⋅xnm−lm).(x(l2−m2)⋅xnl−nm)=x(m2−n2+lm−ln+n2−l2+nm−lm+l2−m2+nl−nm)=x0=1= R.H.S
Hence proved.