x2−4≤0
⇒(x+2)(x−2)≤0
⇒(x+2)≤0 and (x−2)≥0
or (x+2)≥0 and (x−2)≤0
⇒x≤−2 and x≥2
or x≥−2 and x≤2
⇒x∈[−2,2]
∴A={−2,−1,0,1,2}
y2−9≥0
⇒(y+3)(y−3)≥0
⇒(y+3)≤0 and (y−3)≤0
or (y+3)≥0 and (y−3)≥0
⇒y≤−3 and y≤3
or y≥−3 and y≥3
⇒y∈(−∞,−3]∪[3,∞)
∴B={...−4,−3,3,4,...}
⇒A∩B=ϕ
⇒n(A∩B)=0