A = {x : x = x=2n, n ϵ W, n < 4}
⇒x=20=2
x=21=2
x=22=4
x=23=8
∴A={1,2,4,8} [1 mark]
B = {x : x = 2n, n ϵ N and n ≤ 4}
⇒x=2×1=2
x=2×2=4
x=2×3=6
x=2×4=8
∴B={2,4,6,8} [1 mark]
C = {0, 1, 2, 5, 6}
Associative property of intersection of sets
A ∩ (B ∩ C) = (A ∩ B) ∩ C
B ∩ C = {2, 6} [1 mark]
A ∩ (B ∩ C) = {1, 2, 4, 8} ∩ {2, 6} = {2} ...(1) [½ mark]
A ∩ B = {1, 2, 4, 8} ∩ {2, 4, 6, 8} = {2, 4, 8} [1 mark]
(A ∩ B) ∩ C = {2, 4, 8} ∩ {0, 1, 2, 5, 6} = {2}... (2) [½ mark]
From (1) and (2), It is verified that A ∩ (B ∩ C) = (A ∩ B) ∩ C