A = {x : x = 2n, n ∈ W, n < 4}
⇒ x = 20
= 1
x = 21
= 2
x = 22 = 4
x = 23 = 8
∴ A = {1, 2, 4, 8} [2]
B = {x : x = 2n, n ∈ N and n ≤ 4}
x = 2 × 1 = 2
x = 2 × 2 = 4
x = 2 × 3 = 6
x = 2 × 4 = 8
∴ B = {2, 4, 6, 8}
C = {0, 1, 2, 5, 6} [2]
Associative property of intersection of set A ∩ (B ∩ C) = (A ∩ B) ∩ C
B ∩ C = {2, 6}
A ∩ (B ∩ C) = {1, 2, 4, 8} ∩ {2, 6}
= {2} … (1)
A ∩ B = {1, 2, 4, 8} ∩ {2, 4, 6, 8}
= {2, 4, 8}
(A ∩ B) ∩ C = {2, 4, 8} ∩ {0, 1, 2, 5, 6}
= {2} … (2)
From (1) and (2),
It is verified that A ∩ (B ∩ C) = (A ∩ B) ∩ C [1]