OP=p=√h2+k2+l2
Direction cosines of OP are (h√h2+k2+l2,k√h2+k2+l2,l√h2+k2+l2)
∵OP is normal to plane; equation will be
(h√h2+k2+l2)x+(k√h2+k2+l2)y+(l√h2+k2+l2)z=√h2+k2+l2
⇒hx+ky+lz=h2+k2+l2=p2
∴A≡(p2h,0,0);B≡(0,p2k,0);C≡(0,0,p2l)
⇒Axy=12p4|hk|;Ayz=12p4|kl|;Azx=12p4|hl|
⇒△=√(Axy)2+(Ayz)2+(Azx)2=√p84h2k2l2(h2+k2+l2)
=√p8.p24h2k2l2=p52hkl