If a1 = 1 and an+1 ā 3an + 2 = 4n for every positive integer n, then a100 equals
option (c)
Write options as
a) 3n-1- 2n,
b) 3n-1+ 2n,
c) 3n- 2n,
d) 3n+ 2n,
e) 3n-1-n
Check for n = 1, an=1
For a positive integer n, let a(n)=1+12+13+14…+12n−1 then