If a1,a2,...,an, are in AP with common difference d≠0, then (sind)[seca1seca2+seca2seca3+...+seca(n-1)secan] is equal to
cotan+cota1
cotan-cota1
tanan-tana1
tanan-tana(n-1)
Explanation for the correct option:
Find the value of (sind)[seca1seca2+seca2seca3+...+seca(n-1)secan] :
Given a1,a2,…...,an are in AP.
Common difference,d=a2-a1=a3-a2=an–a(n-1)
(sind)[seca1seca2+seca2seca3+…+seca(n-1)secan]=sin(a2-a1)cosa1cosa2+sin(a3-a2)cosa2cosa3+…..+sin(an-a(n-1))cosa(n-1)cosan=(sina2cosa1-sina1cosa2)cosa1cosa2+(sina3cosa2-sina2cosa3)cosa2cosa3+…..+(sinancosa(n-1)-sina(n-1)cosan)cosa(n-1)cosan[∵sin(A-B)=sinAcosB-cosAsinB]=(tana2–tana1)+(tana3–tana2)+….+(tanan–tanan-1)=(tanan–tana1)
Hence, the correct option is C.
If an,a2,a3,…… are in A.P., with common difference d, then the sum of the series sin d[sec a1 sec a2+sec a2 sec a3+……+sec an−1 sec an], is